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Abstract—We present the design of a system that allows
qguadrocopters to balance an inverted pendulum, throw it into
the air, and catch and balance it again on a second vehicle. .
Based on first principles models, a launch condition for the pole
is derived and used to design an optimal trajectory to throw
the pole towards a second quadrocopter. An optimal catching
instant is derived and the corresponding position is predicted by
simulating the current position and velocity estimates forward
in time. An algorithm is introduced that generates a trajectory
for moving the catching vehicle to the predicted catching point
in real time. By evaluating the pole state after the impact, an
adaptation strategy adapts the catch maneuver such that the
pole rotates into the upright equilibrium by itself. Experimental
results demonstrate the performance of the system. m

I. INTRODUCTION

Due to their high maneuverability and their simple me+, . .
. ig. 1. lllustration of two quadrocopters passing a pole between them. The

chanics, quadrocopters have become a popular research S\Q?Ht quadrocopter throws the pole towards the left vehicle, which tries to
jectin recent years. Most early research has been focussedcetsh and re-balance it.
near-hover operation using simplified linear models (see [1],
and references therein). More recently, a growing number of timal trol thods to desi inal th d
researchers have been working on exploiting the full dynamf%pt”::a contro mr—.;f I'O S Ot' estl.gn ? ”r?“."'”a frov;/] En'd
capabilities of quadrocopters. Some of the more complex afden maneuver ofi-ine, estimation techniques for nybri
demanding tasks that have been tackled with quadrocopté stems, real-time trajectory generation as a means to react
in the last few years include ball catching [2], aggressivi stantangously, and adaptation strategies to compensate for
flight maneuvers through narrow gaps and perching [3 ystematic errors.

high-speed flips [4], and cooperative tasks such as lo ', The remainder of this paper is organized as follows: In
carrying [5] or ball tr'wowing [6] ection Il, the dynamics of the quadrocopter-pole system

The work presented herein is inspired by two challengin re deriyed. In Sec.tion. lll, the nomina! throwing traj'ectory
dynamic tasks previously accomplished with quadrocoptert _nd optimal cafching instant are derived. In Section IV,

balancing an inverted pendulum [7], and ball juggling [8]. e state t_estlmatortlsa mt:jmtzlhuced. In Sect|ondV, the:[ C?iltCht
The aim is to balance a pole on a quadrocopter, launch fpaneuver s presented and the necessary quadrocopter Inputs

off the vehicle into the air, and then catch and re-balance @rle tco?r}]purte\:j. ’i‘r? adap;[a::?n str?]}erg;rr): 'f] pressn:egnl]n S(_er(;]uon
with a second quadrocopter (see Fig. 1). O Improve he Systems perlormance ove €. the

Stabilizing a pole about its upright equilibrium position iSexperimental setup is explained in Section VIl and the results

a well-established problem in feedback control. It has beet dls_cussed s_ubsequently. Finally, the paper is concluded
studied for several decades and many different setups of tWeSecnon VIll, including an outlook to future work.

inverted pendulum have been successfully tried, such as the Il. SYSTEM DYNAMICS

pole-on-cart or the Furuta pendulum (see [9], and references), his section, we derive the dynamics of the

therein). Howe_ver,_ throwing the pole into the air, CatChingquadrocopter-pole system for two cases: 1) where the pole
and re-balancing it has - to the best of our knowledge ieg freely through the air, and 2) where the pole has
not been done before. Moreover, it demonstrates the recefily ica| contact with the quadrocopter. In the former case,
progress made in quadrocopter research in performing agi€s qynamics of the pole and the quadrocopter are assumed
maneuvers W'th high precision and can Serve as a testbed,foy,q independent. In the latter case, the quadrocopter and
benchmark trajectory generation algorithms, control stratey, e interact through their contact force. Given that the
gies _and adaptation methods. . quadrocopter’s inertia is an order of magnitude larger than
This paper demonstrates a system design based on fiygt ho1es inertia, it is assumed that the pole has no impact on
principles models and recent advances in optimal contrql,e qadrocopter dynamics. The quadrocopter dynamics are
estimation and real-time trajectory generation. We combingerefore modelled independent of the pole for both cases.

The authors are with the Institute for Dynamic Systems and Control, ETH If not eXp|ICIt|y ment'oneq OtherW|Se' all vectors will be
Zurich, Switzerland{bdario, hehnm, rdandrea ~ }@ethz.ch expressed in a stationary inertial franie For the ease of



notation, vectors are expressedaasiples(zy, zo,...), with  rate inputs into Euler rates [10]:
dimension and stacking clear from context. . ) 1
¢ 1 0 —sin 6 Qg2
A. Quadrocopter 0| =10 «cos¢ singcost Qg - (5)

The quadrocopter is modelled as a rigid body with its con- W 0 —sing cosgcost 2g.:

trol inputs being the angular raté®, = (€,..,9,,,,<,,.) We define the quadrocopter statg and the control input
about the body-fixed coordinate axes and a mass-normalizeektor v, to be

collective thrusta, along the vehicle's:-axis (Fig. 2). The .

angular rate inputs?, are tracked on-board by a high- sq = (Pg: g, 6,0,%) ®6)
bandwidth controller using gyroscope feedback and the rota-  uq = (aq; 2q)- (7)

tional dyr:ar_mcz ian thus be neglected [4]. The control NPUBLe first-order differential equation describing the evolution
are constrained to of the quadrocopter state is then

0< Gq,min < Qg < Gq.max (1) gq = fq(sq’uq)7 (8)
and where f, consists of the nonlinear equations (4) and (5).
|Qq,i| < Qq,mamy 1€ {$7y7 Z} (2) B. Pole

The translational degrees of freedom are described by the!N€ Pole considered in this paper (see Fig. 2) is modelled
as a thin rod of lengtR L, massm,,, and an inertia tens@

position of the vehicle’s center of mags = (z4,vq, 2q), > , ! i
and the rotational degrees of freedom are parametrized usif{§" respect to its center of mass expressed in the pole-fixed
the zyx-Euler angles [10], 6, ¢). The rotation matrix that rame X

maps a vector from the inertial frandénto the quadrocopter- %mpL2 0 0

fixed coordinate framé3 is computed by rotating first about 0= 0 %mpL2 0f. 9)

the inertial z-axis by yaw angle), thereafter about the new 0 0 0

%ﬁ)(;;i z!tch angle, and finally about the new-axis by Some of the equations and derivations of the pole dynam-

ics are too long to be presented herein or are left out for the
"R, 0, ) = Ry(¢) Ry (0)R. (), ©) s_ake of reada_lbility. Hoyvever, the.full derivations of all equa-
tions are available online aittp:/bit.ly/2pN102q
with Ry being a rotation matrix about the corresponding 1) Free flight: The pole mass center position is repre-
axis. The translational acceleration of the vehicle is then fullgented byp, = (xp,y,,2,) and its reduced attitude [11]
determined by the quadrocopter attitude and the collective expressed using the unit vecter pointing along the
thrust input: pole z-axis. During flight, aerodynamic drag and gravity act
0 upon the pole. Due to the small cross section of the pole
5, = R(1,0,8) | 0| — @) along its z-axis and the comparatively large cross section
P =5 > 9 orthogonal to it, the pole’s drag properties depend heavily
aq . . . . i
on its orientation. Consequently, the drag force is split into
where LR is the inverse offR and g denotes gravity. The two components: a force in the direction of the pelaxis
rotational dynamics are obtained by converting the angul@nd a force in itscy-plane. The drag forces themselves are
modelled proportionally to the speed squared:

L
X
Firag,> = _CZ/ P2 (§)11p=(€)dg (10)
-L
K L
Firagan = oy | 1Basf€)112y )06 (12)
—L
Y wherec,.) is the drag coefficient and(¢) is the velocity of
z a point on the pole at a distance ofrom the center. Given
the pole center velocity, and its angular rat€l,, p(§) is
given by:
y I B(§) = By + 2y x (&n). (12)
T The pole-fixedz- and zy-components of the velocity can
0 then be calculated:
Fig. 2. Inertial reference framé and the quadrocopter and pole with
their body-fixed coordinate framés and K, respectively. The quadrocopter D (5) = <p(§)Tn) n (13)

control inputs are a mass-normalized thrugtalong the body-fixedt-axis . . .
and the angular rate€2q,z, Qq,y, Qq,2)- Pay(§) = P(§) — p=(§)- (14)



The torque caused by the aerodynamic drag follows analeshere we assume, without loss of generality, thgboints

gously to (11): from the quadrocopter towards the pole mass center. Subse-
I quently, the pole attitude is parametrized by the deflection of
Marag = 70mt/ (én) x (||p(§)||p(§))d§. (15) the pole center relative to its supporting point (see Fig. 3):
—L
The Newton-Euler equation for the pole in free flight yields L7 = (a> b,V L? —a? - b2) ) (24)
MpPp = Farag,z + Farag.ey — Mpg (16) wherea denotes the deflection in the inertiaddirection and
(}(R(:)}I‘R) Qp = Mirag, (17) b in the y-direction, respectively. The Lagrangian of the pole

can be shown to be (see online appendix [12])
where %R is the rotation matrix from the pole-fixed frame

. . . . 1 1 o~

K to the inertial framel. In the in|n§a gppendy [12], we P — §mpﬁgpp + 5@959}) _ mpngp (25)
show that the pole’s moment of inertia in the inertial frame
I can be written as with

IROR =0 (1 —nn"), 18 . 5 4 bb

K F ( ) (18) By = <5ﬂq+d,yq+b,2q B ;za +2 y (26)
with © = im,L2. It follows from (15) that no torque is L2 —a%-b
induced about the pole-axis, and hence it is assumed that Qp =n X n. (27)

the angular rate about this axis remains constant, i.e. the
angular acceleration along the pole-fixegaxis is zero. In Note that, by computing the angular rate according to (27),

this case, the rotational dynamics (17,18) simplify to the rotational rate about the poleaxis is not recovered.
_ 1 However, since the pole has no moment of inertia about this
Q, = 6Mdmg. (19) axis, rotating about it does not add kinetic energy to the

i ) _ ) system and therefore has no influence on the Lagrangian.
The dynamics for the pole in free flight can be written as The nonlinear dynamics are derived applying Lagrangian

$p = fo(sp) (20) dynamics:
with the pole states,, being defined as d (0% _ 22 -0 (28)
dt \ da Oa
Sp = (pmpp’ n, Qp) (21) d (83) 0.% _ 0 29)
and f,, containing (16), (19) and the kinematic relation dt \ ab b

(22) and are presented in more detail in the online appendix [12].
The dynamics of the combined quadrocopter-pole system can
2) On quadrocopter:In the case where the pole is inbe described by
contact with a quadrocopter, it is assumed that the pole is
rigidly attached to the quadrocopter's mass center. The pole  3¢p = fop(S¢p> Uq), (30)
position then depends on the quadrocopter:

n=Q, xn.

wheres,,, is the combined quadrocopter-pole state
Pp = pg + L, (23) )
Sap = (sq,a,b,d,b> (31)

and f,, contains the quadrocopter dynamifs(8) and the
pole dynamics derived from (28,29).

I1l. NOMINAL MANEUVER DESIGN

In this section, we first introduce the nominal throw
maneuver and then identify the optimal catching instant.

L? —a?—0> A. Throw Maneuver

The throwing of the pole is designed to take place in
the vertical zz-plane. We therefore use a simplified two-
dimensional quadrocopter-pole model with the quadrocopter
0 x Euler anglesp = ¢» = 0 and the pole deflectioh = 0 (see

Fig. 4). Th le atti i rametriz he til i
Fig. 3. Quadrocopter-pole system with the pole balanced on the quadro-g ) € pole attitude is parametrized by the tilt angle

copter. It is assumed that the pole is attached to the quadrocopter’s center

.1 /a
of gravity. o =sin"" (z) . (32)
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Fig. 4. A simplified two-dimensional model of the quadrocopter-polel = 2.5s. The final constraint s, 7 consists of position
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system in thezz-plane. The pole attitude is parametrized by the tilt anglelZq>#q) = (1.5m,2.0m), velocity (i, 4) = (0.3ms™!,5.5ms™1),

« and the quadrocopter attitude is fully described by the pitch afigle  attitudes (o, 0) = (0.48rad, —0.48rad), ~ and ~ angular  rate
&=25rads™!, and with the final control inputugr being

(ag,Qq,y) = (4.48ms~2,2.5rads™1).

The normal force between the quadrocopter and pole is (see

online appendix [12]) causing the pole velocity and angular rate to jump. Assuming

Fn(Sqpyug) = again that the effects of the impact on the quadrocopter are
negligible due to the much larger inertia, the pole dynamics
3, P (33) )
My | dg = 75 dq S (o —0) — L&~ cos(a — 0) at impact ¢, = x4+ Lsina, 2, =z, + Lcosa) can be
written as
For the pendulum to be launched off the vehidig; < 0 is L
required. We note that, as discussed in SectiorI> 0. mp(l"p - l"p) = Ar (35)
The pole can therefore not be thrown vertically, but must be mp(z';r — ) =An (36)
accelerated to a sufficiently high rotational rate O(a* —a~) = —ArLcosa + AyLsina, (37)

We generate a trajectory to maneuver the quadrocopter
from a stationary starting point to a state at which the polehere Ay andAr are the impulses in normal and tangential
leaves the quadrocopter, using optimal control methods: direction to the surface, respectively. The superscriptnd
+ indicate values before and after the impact, respectively.

minimize fOT L5au(t)? + (ag(t) — g)° + 804, (t)*dt  We assume a totally inelastic impact with large friction,
subject to Sqp(t) = fap(Sqp(t), ug(t)) meaning that the velocities of the pole and the quadrocopter
Ugmin < Uq(t) < Ugmaz at the contact point are equal after the impact [13]. With the
0 < Fn(sgp(t),uq(t)) guadrocopter at rest, this is expressed by
Sep(t=0)=0
Szzgt _ T)) = SqpT' it —dtLeosa=0 (38)
(34) 2;{ + &t Lsina = 0. (39)

The initial constraint represents the quadrocopter hoverinys a result, the pole will stick to the quadrocopter after the
at the origin with the pole balanced in the equilibriumimpact and only rotate about the contact point. Inserting
position. The final state,, r is a design parameter, that, conditions (38,39) into the impact dynamics (35-37), the
in combination with a control input, 7, must satisfy angular rate of the pole after the impact can be calculated to
Fn(sqpr,uqr) = 0. The cost function is designed so asbe

to yield a smooth throwing trajectory. A solution to the T U .

optimization problem (34) for a trajectory durati@h= 2.5 at =ga +or (#, cosa — 2, sina). (40)

is shown in Fig. 5. The angular rate necessary for the pole to rotate into the

B. Catching Instant equilibrium is computed by applying the law of energy

Ideally, the pole rotates to the upright equilibrium positionconservatlon:

by itself after it is caught 'by the quadr_ocopter. Since the mygL = mygL cos a + lmp(Lc'ﬁ)? + 1@(0-;)2. (41)
complete throw maneuver is performed in theplane, the 2 2

two-dimensional model is considered again to compute thihe left hand side of (41) represents the potential energy of
optimal catching instant. For reasons that will be stated ithe upright equilibrium and the right hand side represents the
Section V, the pole is caught with the quadrocopter at redbtal energy of the pole after the impact, and is comprised
Large forces act upon the pole when it hits the quadrocoptef a potential and kinetic part. Note that with a pole energy



according to (41), the pole will converge to the unstablé. zy-Plane

equilibrium in infinite time. Inserting (40) into (41) finally  The horizontal correction maneuver begins with the first

yields the condition for finding the optimal catching inStant'prediction of the catching point. A minimum snap trajectory
has been chosen to guide the quadrocopter to the catching

24g (1 —cosa) 0 position because it yields continuous control inputs [16],

L ~ " allowing good tracking under feedback control. With the

(42)  state vector for each andy being defined as = (¢, 4, 4, §),

. . - where ¢ denotes thex- or y-position, respectively, the
The height of the lower pole end, where (42) is satisfied fo('iynamics are given by a quadruple integrator:

the first time, is defined to be the nominal catching height.

This completes the nominal maneuver design. The throw- § = f(s,u) = (¢, G, ¢ v), (43)
ing is defined by the solution of the optimization prob-yii, the shap being the control input The trajectory in
lem (34). The pole state then evolves according to (20) untihe ,_girection, starting from rest at = , and ending with

the optimal catching instant (42). By design, the pole romter?overing at the target positiany, is obtained by solving
into the upright equilibrium after the impact.

3
d_sgna—z (w; cosa — £, sin a)+

minimize fOT u(t)?dt
IV. ESTIMATION subjectto  5(t) = f(s(t),u(t)) (44)
s(t=0) = (z0,0,0,0
In this section, we introduce the estimator used to estimate sgt _ T)xy) <: (Ex% 0, 0)’ 0).

the pole’s state. Because the quadrocopter dynamics are o .
modelled independent of the pole, the quadrocopter stalé® OPtimization problem (44) has the analytical solu-
is estimated separately (using a Luenberger observer, et.'Q.” [17]
see [14]) and is assumed to be known. 840 20£3 2 2 | 3
L u(t) = —(wr—x0) (=203 +306° T, — 12t T2 + T2 ). (45
The dynamics of the pole depend on whether it is |r?() Ty, (r=20)( + Y Y y)- (49)
free fllght_or in contact with a qu_adrocopter. To capturerpe trajectory in they-direction is computed likewise by
the switching nature of the dynamics, a state observer f‘i’éplacing zo and zp with yo and yr, respectively. The

hybrid systems is implemented [15]. The observer consistiass normalized force that the quadrocopter must produce
of multiple continuous-time extended Kalman filters W'th_to follow a three-dimensional path is

discrete-time measurements, each matched to a specific

mode: free flight according to the dynamics (20), and in Lq

contact with either one of the quadrocopters according to f= Yq +9. (46)

the dynamics (30). Each estimator has its own state and Zq

covariance estimate. A motion capture system provides tience, using (4), the nominal thrust input to the quadrocopter
estimators with pose information of the quadrocopters and a, = |f||. The necessary angular rates for a given,

the pole. For each estimator, the ratio of the innovatiogonstant yaw angle), can be shown to be [18]
to the measurement covariance is computed. Depending on
v ffTV)
)

these error measures, the most likely mode is chosen and v

the corresponding estimate is taken as current belief of the 12— A

state. This state estimate is then fed back to the estimators

running in the other modes to correct their states. wherev denotes the jerkv = (', ¥, ). The pitch and
roll angle® and¢, required to computéR, can be calculated

V. REAL-TIME TRAJECTORY GENERATION FOR THE using (4).
CATCH MANEUVER

—0.| = R0, ) ( (47)
0

B. z-Direction

As soon as the pole is launched off the throwing vehicle, It remains to design a vertical motion. As can be seen
the system predicts the catching position (i.e. the positioitom (4) and (47), the magnitude of the rotational control
where the pole crosses the nominal catching height) armdputs and the roll and pitch angles required to follow
the duration until impact,,. A catch maneuver, ending at the trajectory (45) reduce with increasing valuesfofWe
the catching position, is then planned such that the catchinlgerefore seek to find a trajectory in which the quadrocopter
vehicle is nominally at rest at the time of impact. This makeproduces a high thrust during the correction tiffig, and
the system resistant to small timing errors by permittingnds at rest at the catching height.
the vehicle to wait at the impact location. The catching We use the solution to a minimax acceleration problem as
trajectory is constantly updated, thereby accounting for theresented in [6] to move the quadrocopter from a starting
improvement in the prediction accuracy as the predictioheight z, to the catching heightz. The resulting accelera-
horizon decreases. When the impact of the pole on th®n profile is shown in Fig. 6.
catching vehicle is detected, the feedback control law for The free parameters of the maneuver are chosen to be
the catching quadrocopter is switched to a pole balancing,., (the maximum jerk),a,... (the maximum acceler-
controller. ation), and the duration of the high-thrust phdseg ts].
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Fig. 6. The jerk inputu and the acceleratioi that solve the minimax Fig. 7. Control inputsz, (top) and<2,,, (bottom) for a catch maneuver
acceleration problem. The solution consists of 5 intervals of constant jerlith Try = 0.65s, initial horizontal position(zo, yo) = (0m, 0m), and

The solution corresponds to a quadrocopter motion where the quadrocopfgial position(z, yr) = (0.25 m, 0m). The solid lines represent the con-

starts at hover ato, then drops down and increases its thrust in order tqro| inputs when the minimax acceleration maneuvgf,{z = 4.19ms~2,

come to rest at a height ofr. kmaz = 18 ms™3) in the z-direction is flown simultaneously, whereas the
dashed lines correspond to a correction maneuver at constant height.

Because we want to fly they-correction maneuver during B d ter Offset
the period with high thrustT,, is chosen to be identical to ~ Quadrocopter .se o _
the interval lengthts, t5). As a result, it can be shown that A second correction term is introduced for the catching

the maneuver in the-direction lasts bias, defined as the offset of the catching vehicle relative
to the predicted catching position at the time of impact.
_ Gmaz Even though the catching trajectory is different for each
T, =2 + Ty (48) _ o
maz ' catch, the catching quadrocopter repeatedly shows similar
o S position errors when at rest after the catching maneuver. To
and the initial height is given by compensate for this, we assume that the error dynamics are
) ) independent of the position in space and shift the complete
inas Loy + Amazkmas Ty catching position trajectory by the average catching bias of
20 = 27 + . (49) gp J y by g g
kmaz all past attempts.
Fig. 7 shows the control inputs for a typical catch maneuver VIl. RESULTS

and compares them to the inputs if the quadrocopter remaips Experimental Setup

at the catching height the entire time. The algorithms presented in this paper were implemented

in the Flying Machine Arena [19], an indoor testbed for
V1. ADAPTATION aerial vehicles at ETH Zurich. The algorithms run offboard
on conventional desktop computers and control commands
The task of throwing and catching is repetitive and thugre sent to the quadrocopters at a frequend0diz through
offers opportunities to use data from past throwing ang low-latency radio link. The estimator receives position and
catching attempts to eliminate systematic errors. To improv@titude data about the quadrocopters and the pole from an
the system’s performance in future iterations, adaptatiGifrared motion capture system at a rate 28f0 Hz. The

strategies are applied for two key events: estimator predicts the system state in order to compensate for
the closed-loop latency, and provides the feedback controllers
A. Catching Height and Position with full state information.

All experiments were carried out with modified Ascending
After each throw, the actual optimal catching instanfechnologies '"Hummingbird’ quadrocopters [20], equipped
according to (42) is evaluated. The catching height igith custom electronics. A circular platg.12m in di-
then updated with this information using an iterative meaameter is mounted on top of the vehicles, approximately
scheme. This correction accounts for when the throws dno3m above the vehicle’s center of gravity, and serves
not correspond exactly to the nominal throw maneuver, angs a supporting base for throwing, catching and balancing
allows the catch to occur near the optimal height. the pole. The pole used in the experiments consists of a
To account for horizontal deviations from the nominalcarbon fibre tube with lengtl2. = 1.33m and weight
throw, thexy-catching position is updated analogously. Then, = 0.03 kg. The aerodynamic drag properties were exper-
adapted horizontal catching position is used as the waitirigentally identified to ber, = 0.5gm™2, ¢, = 3.5gm >
point of the catching vehicle, minimizing the distance reand c¢,,, = 2.1gm~2. Shock absorbers, consisting of a
quired to travel to catch the pole. flour-filled balloon on a sliding metal cap, are attached to
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Fig. 9. Resulting optimal catching heights and catching positions for a s&ig. 10. The travel distance required to catch the pole and the pole energy
of 9 consecutive throws. The figure on the left shows the optimal catchingfter the impact when the catching height and waiting position are adapted
height of each throw. The mean catching height, depicted by the dashed proposed in Section VI. The dashed line in the right plot represents the
line, is at1.343 m. The plot on the right shows the impact position relativetarget energy2* = mypgL.
to the nominal impact position, caught at a heightid$43 m. The cross
represents the mean catching poipt;, 1) = (—0.863 m, 0.106 m) and
the standard deviation &4, 0y) = (0.146 m,0.128 m). . .

2) Pole Catching and AdaptationThe results of the

applied adaptation strategies are shown in Fig. 10. The travel

both pole ends to dampen the impact on the catching pla@istance required to catch the pole converges to roughly
This justifies our assumption of a totally inelastic impact irf-2m, which, as expected, is almost exactly the standard
Section Il deviation of the catching point. The catching attempts in

The throwing trajectory is generated offline using thdteration 2 and 7 were aborted because the catching point
optimal control toolbox ACADO [21] in order to solve the was too far away from the catching vehicle. Although the
optimization problem (34) numerically. Finite-horizon time-optimal catching heights vary significantly (see Fig. 9), the
varying LQR controllers, obtained by linearizing the systenfpole energy after the impact is close to the target energy
dynamics (8) or (30) about the desired trajectories, are us€fdergyE* = m,gL when caught at a previously defined
to track the nominal throwing and catching maneuver. Fdreight. After iteration 2, the deviation to the target energy is
the purpose of balancing the pole before the throw and aften average).0102J, where0.01J is equivalent to the pole
the catch, the infinite-horizon LQR controller from [7], tunedbeing at rest at a tilt angle ef = 18.4°. In both attemptss
for a large basin of attraction, is applied. and9, the catching vehicle successfully caught the pole.
A video showing the system presentend herein is available

B. Experimental Results online athttp:/bit.ly/2J2w9CC
A typical series ofd throws (with the same parameters as

in Fig. 5) and8 catches were executed. In the first run, only VIIl. CONCLUSION AND OUTLOOK
the throw maneuver was performed and the catching heightWe have presented a method that allows a quadrocopter
and position were updated. For the iterati@ns?7, the catch to balance a pole and throw it towards a second quadro-
maneuver was performed with a horizontal offsetlah. copter, which catches and re-balances it. Based on first
During these iterations, the adapted coefficients convergeatinciples models, a condition for launching the pole off
For the throwss and?9, the catching quadrocopter attemptedhe quadrocopter was identified and a trajectory to this
to catch the pole. Fig. 8 shows an image sequence ofstate was generated. Furthermore, it was shown that the
successful throw and catch attempt. real-time correction maneuver in they-plane, which is

1) Pole Throwing: The launch of the pole is detected bynecessary to catch the pole, can be tracked precisely by
the estimator approximately.21s after the nominal launch simultaneously flying an appropriate maneuver in the
point, highlighting a good match between the nominal desigdirection. An adaptation strategy was employed to adapt
and experimental results. The flight duration until the optimahe catching height and expected catching position from
catching instant lasts on avera@&12s. From the launch of previous iterations. Additionally, a strategy was implemented
the pole, a furthed.075 s elapse before the catching positionto compensate for the systematic offset error shown by the
prediction converges. In order to catch all throws reliably, theatching vehicle. The feasibility of these approaches was
guadrocopter must be at the impact position slightly beforealidated in the Flying Machine Arena.
the average impac0(075 s). This results in a correction time  Due to the high sensitivity to disturbances and the short
T,y of approximately0.66s. amount of time to react to them, we intend to use the

Fig. 9 shows the optimal catching heights and the catchingresented system as a testbed for high-performance trajectory
positions. The mean optimal catching height isla#43m. generation algorithms and adaptation methods. Experiments
The average catching position, relative to the nominal catchvith this system have highlighted various possibilities for
ing position, is located afz, y) = (—0.863 m,0.106 m). extensions and improvements. The nominal throw maneuver



a)

b)

<)

Fig. 8. Image sequence of a successful throw and catch attempt: a) The quadrocopters wait at their nominal starting position. b) As soon as the thrt
maneuver starts, the catching quadrocopter shifts its position to compensate for the offset error of the throwing vehicle at the beginning of the thro
maneuver. c) While the throwing quadrocopter is tracking the throw trajectory, the catching vehicle begins to fly towards the expected catching positio
such that the vehicle is in the high-thrust phase of the catching trajectory when the first catching position is predicted. d) While the pole is flying in the
air, the catching position is predicted 50 times per second and the catching maneuver is adapted accordingly. €) As soon as the pole hits the catch

d) e)

quadrocopter, it begins to balance the pole.

design could be improved by not fixing the terminal state,[7]
but explicitly optimizing under the lift-off constraint. More
sophisticated learning algorithms could be used to furthe
eliminate systematic errors. While errors in the throw ma-
neuver are currently accounted for in the catching phase,
methods for improving the throw maneuver based on pagf!
trials should bring the executed maneuver closer to the

nominal design.
1
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